當前位置:深圳摩方新材科技有限公司>>技術(shù)文章展示
您好, 歡迎來到化工儀器網(wǎng)! 登錄| 免費注冊| 產(chǎn)品展廳| 收藏商鋪|
當前位置:深圳摩方新材科技有限公司>>技術(shù)文章展示
2023
06-162023
06-08西南石油大學:一種具有可調(diào)力學性能的新型單斜拉脹超結(jié)構(gòu)
具有負泊松比效應的拉脹結(jié)構(gòu)是一類功能和結(jié)構(gòu)一體化的力學超結(jié)構(gòu)。由于反常規(guī)的負泊松比效應,拉脹超結(jié)構(gòu)具有諸多獨。特的力學性能和廣闊的工程應用前景。相較于缺失支柱胞元結(jié)構(gòu),手性拉脹結(jié)構(gòu)(Chiralauxetics)可以在大應變下保持平滑的變形,并且對制造誤差相對不敏感。缺失支柱胞元結(jié)構(gòu)(missingribauxetics)是一類典型的手性拉脹結(jié)構(gòu),可視為由傳統(tǒng)手性拉脹結(jié)構(gòu)的中心圓環(huán)替代為中心支架而成(圖1)。圖1傳統(tǒng)手性及缺失支柱拉脹結(jié)構(gòu)相較于傳統(tǒng)手性拉脹結(jié)構(gòu),缺失支柱拉脹結(jié)構(gòu)在大變形范圍內(nèi)具有2023
06-08葡萄糖響應型胰高血糖素微針陣列貼片用于低血糖無創(chuàng)的治療
低血糖是一種常發(fā)生在糖尿病患者的治療過程中的副作用,較輕微時,會出現(xiàn)注意力不集中、出汗、心慌和視力變化等癥狀,可通過攝入碳水化合物解決,嚴重時,則會出現(xiàn)失去知覺、昏迷等癥狀,危及生命。因此,在這些不可預見的低血糖緊急情況下,需要及時補充胰高血糖素。采用安全、無痛無創(chuàng)的方式進行藥物遞送是解決上訴問題的理想方案。其中,微針陣列貼片是主要的候選方式。微針貼片由具有多功能特性的材料構(gòu)成,其可以控制藥物擴散動力學,實現(xiàn)按需給藥。據(jù)麥姆斯咨詢報道,近期,來自浙江大學顧臻團隊的研究人員提出了一種結(jié)合3D打印技2023
06-08材料“尺寸效應”實現(xiàn)對微納3D打印結(jié)構(gòu)的力學性能調(diào)控
以面投影微立體光刻(PμSL)為例,目前高精度光固化三維(3D)打印已經(jīng)被廣泛應用于快速制造具備微納特征尺寸的高分辨率聚合物模板結(jié)構(gòu),用于規(guī)?;尚沃圃焯卣鞒叽缧≈翈孜⒚咨踔涟偌{米級別的定制化3D微晶格(microlattice)機械超材料(mechanicalmetamaterials)。然而,聚合物3D打印件單元的本征力學性能在相關對應的尺度上尚沒有系統(tǒng)的力學特性研究。特別是當超材料結(jié)構(gòu)件的特征尺寸進入微米/亞微米級別時,缺乏對其彈塑性在對應特征尺寸下的根本理解,將大大限制了其在微/納米晶格2023
06-082023
06-012023
06-01天然致密砂巖孔隙結(jié)構(gòu)的3D打印與流體輸運特性研究
流體在巖石孔隙中的運移規(guī)律及其流固耦合效應是地下油氣儲備與開發(fā)的核心科學問題,也是導致不同工程災害或工程難題的重要因素。精確表征巖石微觀孔隙結(jié)構(gòu),揭示微觀孔隙結(jié)構(gòu)與流體輸運特性的內(nèi)在關聯(lián),是開展深部巖體相關工程研究的基礎。近期,中國科學院武漢巖土力學研究所的宋睿副研究員、劉建軍研究員、楊春和研究員聯(lián)合西南科技大學的汪堯博士等人提出了一種利用3D打印和微CT成像技術(shù)實現(xiàn)致密砂巖復雜孔隙結(jié)構(gòu)定量表征和多相流體輸運特性的可視化研究方法。研究團隊利用新型的面投影微立體光刻技術(shù)(PμSL,nanoArch2023
06-01【Nature/Science期刊集錦】關于3D打印相關的報導
Nature:3D打印的共晶高熵合金獲突破性進展使用L-PBF打印了AICoCrFeNi2.1的雙相納米層狀高熵合金(HEAs),其表現(xiàn)出約1.3GPa的高屈服強度和約14%的大均勻伸長率,遠超其他*的金屬3D打印材料。論文信息:Ren,J.,Zhang,Y.,Zhao,D.etal.Strongyetductilenanolamellarhigh-entropyalloysbyadditivemanufacturing.Nature(2022).原文鏈接:https://doi.org/10.2023
06-01《PNAS》:基于極小曲面的微納米點陣材料的優(yōu)異力學性能
作為一種新興的力學超材料,三維微納米點陣材料具有低密度、高模量、高強度、高能量吸收率和良好的可恢復性等優(yōu)異的力學性能,極大地拓展了已有材料的性能空間。如何通過拓撲結(jié)構(gòu)設計獲得具有優(yōu)異力學性能的三維微納米點陣材料是固體力學領域的研究熱點之一。微納米點陣材料通常由具有特定結(jié)構(gòu)的單胞在三維空間中周期陣列形成。根據(jù)組成單胞的基本元素的種類,可以將三維微納米點陣材料分為基于桁架(truss)、平板(plate)和曲殼(shell)三種類型。目前,基于桁架的微納米點陣材料已經(jīng)表現(xiàn)出良好的力學性能,但其節(jié)點處2023
06-012023
05-29微納3D打印花瓣狀微結(jié)構(gòu)表面實現(xiàn)液滴操控、油水分離和減阻
受自然生物學啟發(fā)制備的具有不同潤濕特性的功能性表面在液體收集、液滴操縱、減阻及油水分離和藥物輸送系統(tǒng)等領域蓬勃發(fā)展。值得注意的是,功能性拒水表面成為其中一個熱門議題。荷葉上的超疏水現(xiàn)象表明由親水材料制成的具有特殊微納結(jié)構(gòu)的表面可以實現(xiàn)疏水甚至超疏水特性。因此,越來越多的研究人員致力于設計和制造獨。特的微納結(jié)構(gòu)使得由親水材料組成的表面呈現(xiàn)出超疏水的特性,進而實現(xiàn)更多特定的功能。隨著3D打印技術(shù)的逐步發(fā)展,越來越多的復雜結(jié)構(gòu)如蘑菇頭狀、重入蘑菇頭狀、打蛋器狀及仿彈尾蟲表面等被設計和制備以實現(xiàn)一定的拒2023
05-292023
05-292023
05-29由雙尺度懸垂鋸齒結(jié)構(gòu)實現(xiàn)的選擇性液體擇向
文章導讀自1805年托馬斯·楊提出表界面浸潤性理論的兩百多年以來,在研究者的傳統(tǒng)認知中,在無外部能量輸入的情況下,液體在固體表面的傳輸方向是明確的,即主要由材料表面結(jié)構(gòu)決定而不會隨液體的本征性質(zhì)的變化而發(fā)生改變。比如在非對稱的結(jié)構(gòu)表面,水和酒精都可能發(fā)生單向傳輸,但其傳輸方向是一致的。而最近的研究發(fā)現(xiàn),南洋杉葉片的多曲率結(jié)構(gòu)特征使其具備讓不同液體自主擇向的功能,研究者由此研發(fā)了一種亞毫米級具有橫向和縱向雙重曲率的3D毛細鋸齒結(jié)構(gòu)用于調(diào)控不同表面張力的液體鋪展模式,實現(xiàn)了同一表面上流體的自主擇向。2023
05-192023
05-19基于3D打印技術(shù)制造適用于微重力環(huán)境的微孔板
來自德國法蘭克福大學(GoetheUniversityFrankfurt)布赫曼分子生命科學研究所(BuchmannInstituteforMolecularLifeSciences)的研究人員使用摩方精密(BMF)的微尺度3D打印機microArch®S140制造了一種微型培養(yǎng)皿——水凝膠微孔板(hydrowells)的模具,該微孔板可在微重力環(huán)境下用于培養(yǎng)3D多細胞球體。此項研究是太空多細胞球體聚集與生存實驗(SpheroidAggregationandViabilityinSpace,SH2023
05-11廣東工業(yè)大學《ACS AMI》:微針SERS傳感器實現(xiàn)農(nóng)藥殘檢測
微針SERS傳感是一種基于表面增強拉曼散射(SERS)技術(shù)的傳感器,它利用微米級別的針尖結(jié)構(gòu)來增強樣品的SERS信號,從而提高檢測靈敏度。SERS技術(shù)是一種非常靈敏的光譜技術(shù),可以檢測非常微小的分子,并且可以提供分子的結(jié)構(gòu)信息。由于其高靈敏度和選擇性,SERS技術(shù)被廣泛應用于分析化學、生物醫(yī)學和環(huán)境監(jiān)測等領域。近年來,殘留農(nóng)藥已成為最。關注的話題之一,在茶葉、水果、蔬菜等不同的農(nóng)產(chǎn)品中都檢測到了殘留農(nóng)藥。有些殘留農(nóng)藥,特別是內(nèi)源性農(nóng)藥,不易被清除,可導致癌癥、激素破壞、哮喘、過敏等多種疾病。微針2023
05-11基于側(cè)面數(shù)字光處理的3D打印技術(shù)快速制備微流控芯片
由于在生物、化學及醫(yī)學等領域有巨大潛力,微流控芯片技術(shù)廣泛應用于藥物篩選、新藥開發(fā)及癌癥研究等多個領域,其中微流控芯片的制備是科研人員關注的熱點。傳統(tǒng)制作微流控芯片的工藝流程比較復雜,制作周期較長,且一般需要凈化間及其他昂貴的設備。3D打印具有成本低廉、制作快速的優(yōu)勢,因此基于3D打印技術(shù)制作微流控芯片成為一種替代方案。目前3D打印技術(shù)主要用于制作模具,但打印得到的模具需要后續(xù)處理才能進行聚二甲基硅氧烷(PDMS)等結(jié)構(gòu)復制,因此延長了微流控芯片的制備周期,不利于快速設計結(jié)構(gòu)進行原型驗證。近年來2023
05-11上海交大:基于側(cè)面數(shù)字光處理的3D打印技術(shù)快速制備微流控芯片
由于在生物、化學及醫(yī)學等領域有巨大潛力,微流控芯片技術(shù)廣泛應用于藥物篩選、新藥開發(fā)及癌癥研究等多個領域,其中微流控芯片的制備是科研人員關注的熱點。傳統(tǒng)制作微流控芯片的工藝流程比較復雜,制作周期較長,且一般需要凈化間及其他昂貴的設備。3D打印具有成本低廉、制作快速的優(yōu)勢,因此基于3D打印技術(shù)制作微流控芯片成為一種替代方案。目前3D打印技術(shù)主要用于制作模具,但打印得到的模具需要后續(xù)處理才能進行聚二甲基硅氧烷(PDMS)等結(jié)構(gòu)復制,因此延長了微流控芯片的制備周期,不利于快速設計結(jié)構(gòu)進行原型驗證。近年來2023
05-11陸。軍軍醫(yī)大學第一附屬醫(yī)院羅高興教授團隊 《ACS Nano
增生性瘢痕(HS)是一種病理性瘢痕,表現(xiàn)為異常僵硬、腫脹、抗拉強度降低和色素沉著,可引發(fā)瘢痕患者機體功能障礙、情緒焦慮、抑郁等癥狀。因此,增生性瘢痕的防治一直是創(chuàng)傷后面臨的一個重要挑戰(zhàn)。聚合物微針(MNs)已成為一種的非常有效的透皮物質(zhì)交換介質(zhì),其可以最小的侵入性幫助在疾病治療如腫瘤、糖尿病、細菌生物被膜、真菌感染和疤痕中提供各種藥物的透皮傳遞。但換個角度看,微針可穿透表皮層角質(zhì)層,在組織中形成微孔陣列,往往會改變疤痕組織的生物力學環(huán)境和超微結(jié)構(gòu),這給增生性瘢痕的臨床管理尋找一新的方便、耐受性好以上信息由企業(yè)自行提供,信息內(nèi)容的真實性、準確性和合法性由相關企業(yè)負責,化工儀器網(wǎng)對此不承擔任何保證責任。
溫馨提示:為規(guī)避購買風險,建議您在購買產(chǎn)品前務必確認供應商資質(zhì)及產(chǎn)品質(zhì)量。